Human cord blood CD133+ cells exacerbate ischemic acute kidney injury in mice.

نویسندگان

  • Dylan Burger
  • Alex Gutsol
  • Anthony Carter
  • David S Allan
  • Rhian M Touyz
  • Kevin D Burns
چکیده

BACKGROUND Acute kidney injury (AKI) in humans has few therapeutic options. In experimental models, administration of progenitor cells facilitates recovery from AKI. Human umbilical cord-derived CD133(+) progenitor cells promote endothelial repair in ischemic limb, heart and brain tissue. METHODS We examined the effects of human CD133(+) progenitor cells in bilateral ischemia-reperfusion (I/R) kidney injury in non-obese diabetic severe combined immunodeficient mice. CD133(+) cells from human cord blood were injected intravenously at the time of reperfusion and the extent of injury was determined by plasma biochemistry and kidney histology. RESULTS In mice with I/R, fluorescently labeled CD133(+) cells were detected in blood 2 min after injection but decreased rapidly thereafter with no evidence of homing to the kidneys. In mice subjected to I/R, CD133(+) cells significantly increased plasma urea and Cr at 24 h compared to vehicle- or CD133(-) cell-treated mice. CD133(+) cells exacerbated tubular necrosis and apoptosis, increased plasma tumor necrosis factor-α and increased kidney neutrophil infiltration. In contrast, CD133(+) cells did not affect tubular cell proliferation. Administration of CD133(+) cells to FVB/N mice post-I/R also augmented kidney injury. CONCLUSIONS These data indicate that human cord blood-derived CD133(+) cells unexpectedly exacerbate ischemic AKI in mice, possibly through soluble factors. Our study highlights the importance of caution in cell-based therapies for human AKI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo effects of allogeneic mesenchymal stem cells in a rat model of acute ischemic kidney injury

Objective(s): Renal ischemia-reperfusion injury (IRI) as a severe condition of acute kidney injury (AKI) is the most common clinical problem with high mortality rates of 35-60% deaths in hospital. Mesenchymal stem cells (MSC) due to unique regenerative characteristics are ideal candidates for the treatment of the ischemic injuries. This work is focused on the administration of MSC to IRI-induce...

متن کامل

Jagged-1 Signaling in the Bone Marrow Microenvironment Promotes Endothelial Progenitor Cell Expansion and Commitment of CD133+ Human Cord Blood Cells for Postnatal Vasculogenesis

Notch signaling is involved in cell fate decisions during murine vascular development and hematopoiesis in the microenvironment of bone marrow. To investigate the close relationship between hematopoietic stem cells and human endothelial progenitor cells (EPCs) in the bone marrow niche, we examined the effects of Notch signals [Jagged-1 and Delta-like ligand (Dll)-1] on the proliferation and dif...

متن کامل

Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues.

Human umbilical cord blood (UCB) contains high numbers of endothelial progenitors cells (EPCs) characterized by coexpression of CD34 and CD133 markers. Prior studies have shown that CD34+/CD133+ EPCs from the cord or peripheral blood (PB) can give rise to endothelial cells and induce angiogenesis in ischemic tissues. In the present study, it is shown that freshly isolated human cord blood CD34+...

متن کامل

Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice

Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategori...

متن کامل

Protective role of remote ischemic per-conditioning in acute renal injury induced by ischemia reperfusion via TLR-4 and TNF-α signaling pathway in rats

sIntroduction: Acute kidney injury (AKI) induced by ischemia-reperfusion (I / R) of the kidney as an inflammatory process in which multiple inflammatory factors are involved. Recently, one of the modalities of inflammation in AKI is Remote Ischemic Per-Conditioning (RIPerC). Materials and Methods: In this study, bilateral renal artery and vein occlusion were done for 45 minute and reperfusion a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 2012